来源:幼教网 2018-03-20 15:09:55
6+x=14 36-7=29 60+23>70 8+x
50÷2=25 x+4<14 y-28=35 5y=40
讨论:等式和方程有什么关系呢?
【设计意图:学生从生活情境中抽象出数学表达是横向数学化,在数学世界里需要通过纵向数学化认识概念的本质特征。描述现实世界中数量关系的式子有多种,让学生从常见的关系式中通过观察、比较、分类、抽象、概括逐步分化出方程的概念,明确概念的内涵与外延,自主建构起对概念本质特征的认识。】
4、描述生活
⑴说饮食(以图的形式呈现)(看图列方程)
① 萝卜——“如皋萝卜赛雪梨”。
【图示:三只萝卜各x克,共重450克。(台秤)
列方程:__________________ 】
② 三香斋茶干——“只此一家”。
【图示:每袋x元,共 4袋。一共24元。
列方程:__________________ 】
③白蒲黄酒——“液体长寿面包”。
【图示:一只杯子200毫升,另一只杯子x毫升,共500毫升的黄酒。
列方程:__________________ 】(先不出现数字)
提问:从图中,你获得了什么数学信息?
大杯的容量、小杯的容量与这瓶酒的净含量有怎样的关系呢?
给出信息后,提问:根据给出的信息,你会列方程吗?
提问:如果把已知量和未知量变一变,你还会列方程吗?(300+y=500)
如果再变一变呢?(z+1.5z=500)
追问:刚才,同学们都是根据什么来列方程的?
⑵话运动
用方程表示数量关系(录音配合图片文字)
①播放录音(配图):“饭后百步走,活到九十九。”张大爷每天早饭后忙完家务,就去休闲广场散步。他每分走x米,经过5分,正好走完400米。
屏幕显示文字:每分钟走x米,经过5分钟,正好走完400米。
列方程:___________________
②散完步,张大爷就去打太极拳。老人们排着整齐的队伍,每排x人,共6排。前面还有两名教练示范,一共有62人。
屏幕显示文字:每排x人,共6排,前面有两名教练示范,共62人。
列方程:___________________
⑶赏美景
用方程表示数量关系(图文结合的形式呈现)
① 护城河边,有两个著名的景点,它们的历史可悠久了!
【显示文字:水绘园有x年的历史,定慧寺比水绘园的历史长1000年,已有1400年历史。
列方程:___________________ 】
②古城如皋有内、外两条城河环绕,沿着护城河走,你会发现一座座各具特色的桥。
【显示文字:内城河上有x座桥,外城河上有x+5座。一共有29座桥。
列方程:___________________ 】
③ 如皋的盆景久负盛名,屡获大奖。
左边这一盆叫(层云叠翠),右边这一盆叫(蛟龙穿云)。它们都是名贵的盆景。
【显示:“层云叠翠”盆景的价格是x元,“蛟龙穿云”的价格是它的2倍,一共360000元。
列方程:___________________ 】
④再带你去一览“天下第一大寿星”的风采。很高是吧!小明也正在这里游玩呢!你找到他了吗?跟寿星像比怎么样?
【显示:小明高x米,寿星像总高度是小明身高的30倍还多1米,寿星像高49米。
列方程:___________________】
【设计意图:精心选取如皋长寿文化素材为载体,通过对多个现实情境中等量关系复杂程度层层递进的方程描述,体会方程是刻画现实世界的有效数学模型,其思想核心是用数学符号表达两件事情的等价。另一方面,丰富对家乡“江苏历史文化名城”、“中国花木盆景之都”、“世界长寿养生福地”的认识,增强作为现代公民对家乡、祖国的认同感,同时有机地渗透健康生活方式的教育。】
三、拓展应用
【课件播放达能佳钙饼干广告视频】
提问:为了创意的需要,广告中固然有夸张的成分。但据调查,关于饼干本身的一个重要信息却是可靠的。你捕捉到了这条信息了吗?(1包佳钙饼干的钙含量=3杯牛奶的钙含量)
咱们消费者可得明明白白消费!关于这条模糊的信息,同学们还想进一步了解哪些更为详细的信息?(根据学生提问揭示相关信息。)
根据提供的信息,你能提出什么问题?
你能用方程表示三个数量之间的相等关系吗?(结合课件演示)
估计一下,每片饼含钙多少毫克?(18毫克!)
小结:咱们同学还真有数学眼光!把生活中的问题转化成数学问题;又用含用字母的式子表示数量;再进一步用方程表示数量间的相等关系。而方程正是我们解决问题的一个有力的工具!
【设计意图:在较复杂的问题情境中,让学生体会算术方法解决起来比较复杂的问题,可以比较容易地通过方程表示其中的数量关系,体会方程思想的魅力。在生活问题数学化、数学问题代数化、代数问题方程求解的过程中,经历方程建模的全过程,真正让学生理解方程的含义,体验方程思想,引领学生走进方程世界。】
四、总结提升
课件演示:笛卡儿曾经提出了一种解决一切问题的“万能方法”
第一步,把任何问题转化为数学问题;
第二步,把任何数学问题转化为代数问题;
第三步,把任何代数问题归结为方程求解。
虽然这种方法现在看来并不是万能的,但很多问题的确是通过方程架起了已知量和未知量之间的桥梁,从而顺利得到解决。同学们将在今后的学习中逐步体会到从算术到方程是人类在数学上的进步!
【设计意图:笛卡尔的话是对方程思想的高度概括,充分展现了方程的巨大作用。这与学生在本课学习中所获得的初步体验相一致,因此必能引起学生思想上的共鸣,也指明了今后学习的方向。】
相关推荐:
小升初试题、期中期末题、小学奥数题
尽在奥数网公众号
欢迎使用手机、平板等移动设备访问幼教网,幼儿教育我们一路陪伴同行!>>点击查看