来源:幼教网 2018-03-20 15:05:21
(二)合作交流 探索算法
1.应该怎样计算?
(1)先独立思考,再小组交流,想想看,有没有不同的方法?
(2)实在想不出办法的,可以看看老师给你们准备的信封。(信封中装有1/8和3/8的直观图)
2.根据学生汇报整理出(不一定要小结出具体是什么法,可视情况而定):
方法一:用画图的方法直观得出1/8+3/8=4/8 小结:图示法
方法二:1个1/8加上3个1/8等于4个1/8,也就是4/8
小结:分数组成法
方法三:1/8=0.125,3/8=0.375,0.125+0.375=0.5,也就是4/8,小结:转化法
方法四:1/8+3/8=1+3/8=4/8 在前面某一方法的基础上,观察得出:分子相加,分母不变。
3.让学生说说自己喜欢哪种方法,为什么?
生:比如计算1/120+3/120,由此得出:图示法直观明了,但分母较大时比较麻烦;分数组成法要用文字叙述,也比较麻烦;转化法不能适用于任意的分数。唯有第四种方法既简便,又适用,易于操作。由此揭示出同分母分数的加法则。
4.规范计算过程。
1/8+3/8=1+3/8=4/8=1/2
比较刚才得出的计算结果,4/8、1/2,哪种计算结果更简洁?
借助直观图,学生感受到4/8就是1/2,体会用最简分数表示结果的合理性和简约性。
5.总结法则。
同分母分数加法是怎么计算?能用自己的话来总结同分母分数加法的计算方法吗?
同分母分数相加,分母不变,分子相加。
6.闭上眼睛想一想,计算方法是怎样的? 计算结果要注意些什么?
计算结果能化简的,要化成最简单的分数。
7.同桌互相出题考对方。谁能出几道类似的题来考考你的同学?请同学说说计算过程和想法。
8.最简分数
(1)像1/2、1/8、1/3、3/8、3/4……这样,分子和分母只有公因数1的分数,叫做最简分数。
(2)结合实例 巩固认识
1.说出一个最简分数
2.判断3/36、6/8是最简分数?
三、限时作业
1.第一关:必答题(由每组派代表上台计算)
2/9+4/9 5/9+4/9 3/10+9/10
2.第二关:抢答题
1)分母是8的所有最简分数有( )。
2)5/12和6/15都是最简分数。 ( )
3.第三关:智力陷阱
张玲和陈静都喜欢课外阅读。张玲一天看了《皮皮鲁和鲁西西外传》的1/2,陈静一天看了《蓝猫淘气3000问》的1/2。两人一天共看完了1/2+1/2=2/2=1(本)。你认为对吗?为什么?
四、回顾反思 总结提升
谈谈这节课你有哪些收获?
第二课时
一、复习导课
1、 2/9+7/97/24+23/244/15+8/1513/20+27/20
学生独立完成集体订正。
(1)同学们你是怎样计算的?
同分母分数相加,分母不变,分子相加。
(2) 计算结果我们应注意什么问题?
计算结果能化简的,要化成最简单的分数。
2、找出每组数的最大公因数。
6和8 27和9 8和9 42和54
[设计意图]通过两道练习题,使学生回顾同分母分数的加法的解法、最简分数,复习最大公因数,为学习同分母分数减法、约分进行铺垫。
二、经历过程、理解约分的含义。
(一) 尝试“变”分数。16/24
1.活动要求:
(1)尝试用以前面的知识解决。
(2)这个分数要和原来的分数大小相等。
(3)它的分子、分母要比原来的分数的分子、分母小。
2.要求学生先独立思考,在小组内交流想法。
(1)用公有的因数2分几次去除。 分步约分
(2)用分子、分母的最大公因数去除。 一次性约分
(二)归纳概念。
1.引导观察:
观察所变出的分数与原来分数的关系?
2.归纳意义:
启发学生由分数的大小和分子、分母的变化概括约分的概念。(像这样,把一个分数的分子、分母同时除以公因数,分数的值不变这个过程叫做约分。)
3.规范格式
4.巩固练习
(1)观察 这个分数能否再化简了?为什么?
(2)游戏:找最简分数练习。
要求学生两人合作,一个同学出一个分数,另一个同学变出一个和大小相等,但分子、分母都比较小的分数。把变出的分数写在自己的作业纸上,能变几个就变几个。
小组内的同学说一说自己变的分数是怎样得来的,再全班交流。
(观察后发现分数大小相等,但分子、分母都比原分数的分子、分母小、)。
5.归纳提升
学生用自己的语言说一说怎样约分、什么样的分数是最简分数。
把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
三、知识迁移、解决问题
(一)串联情境,唤醒旧知:(出示情境图)
谈话:同学们,上节课我们被美丽的剪纸情境吸引住了,提出并解决了许多有价值的数学问题。看,这里还有问题呢!
[设计意图]串联情境,引出问题既有利于激发学生的学习兴趣,激活学生的旧知和生活经验,又可以引入下一步同分母分数减法的学习。
(二)自主尝试、探索新知:
1.呈现问题:“鲤鱼剪纸”的作品数量比“蝴蝶剪纸”的作品数量多占了总数的几分之几?
(1)你能用以前学过的方法,解决问题吗?试着做一做。
(2)学生独立完成。
(3)交流算法,加深理解。
[设计意图] 从学生的生活经验和已有的知识背景出发,在新知识的教学过程中,通过有序的思考,使学生理解和掌握新知,并能运用新知解决问题,发展数学思维能力。
2.归纳方法 提升认识
想一想:怎样计算同分母分数加减法?
同分母分数相加减,分母不变,只把分子相加减。计算结果能约分的一般要约成最简分数。
[设计意图]给学生时间和空间自主探索解题思路,调动了学生学习的积极性,使学生归纳出了同分母分数相加减的计算方法,让多数学生尝试成功,从中获得积极的成功体验,进一步提升认识。
四、巩固练习 拓展应用
[设计意图]练习的设计由浅入深,由易到难,既兼顾了习题的针对性、层次性、灵活性,又发展了学生的思维,使不同水平的学生都有所提高,有利于激发其思维的积极性。
五、全课总结
请同学们说一说通过本节课的学习,你有哪些收获?
教学反思:
在学习约分之前,学生已经探索了分数的基本性质,学习了求最大公因数的方法,因此合理的知识迁移,较好地帮助了学生理解“约分”的含义,使知识深入浅出,便于学生理解和掌握。从课堂反馈可以看出大部分学生能较好的掌握,还有少部分学生需要进一步指导巩固。
相关推荐:
小升初试题、期中期末题、小学奥数题
尽在奥数网公众号
欢迎使用手机、平板等移动设备访问幼教网,幼儿教育我们一路陪伴同行!>>点击查看